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Abstract
Helium–dislocation interaction during the isochronal annealing of high energy
He-implanted aluminium is studied using positron annihilation techniques.
While helium is strongly trapped by the dislocations, the binding appears
not to be strong enough to delay the annealing stages significantly. The
nucleation of helium bubbles is delayed but the helium atoms do not hold the
dislocations stable against annealing. The estimation of the helium bubble
parameters was carried out taking into consideration the expansion of the
lattice during the annealing and the bubble pressure is higher than that at
room temperature, as expected. A polynomial relation is obtained between
the helium melting temperature and the helium atom density. The bubbles
are highly overpressurized and could serve as ideal systems for exploring the
Simon–Glatzel transition expected at low temperatures.

1. Introduction

Despite the many review articles and papers published during the last few years on the
subject of helium bubble formation and growth in metals and alloys [1–5], proper attention
seems to be still needed on the influence of dislocations on the said processes. During high
energy implantation of energetic alpha particles in solids, a small density of dislocations is
generally produced along with other point defects and defect clusters. The extent to which the
dislocations can trap helium needs to be investigated, at least to delineate their role from that
of the better explored species of defects such as vacancies and vacancy clusters.

Among the numerous versatile experimental probes available for investigation, positron
annihilation stands unique as a viable spectroscopic method to study the defects and defect–
impurity interactions over a wide range of types, size and concentration. In many metals,
the positron lifetimes in monovacancies and point dislocations are rather close such that
the instrumental resolution fails to indicate their respective interaction with light gas ions
seperately. This has made it difficult to comment on the interaction of dislocations with helium
or other inert gas ions from studies where the evolution of vacancies or their clusters into dense
bubbles obtained better coverage. This paper attempts to highlight how the dislocations present
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in a metal prior to helium implantation can affect the initial stages of bubble formation and
growth by carrying out a unique experiment described below and focuses on a few important
aspects of helium bubble parameters derived from the existing positron surface state model [6]
and the high density equation of state [7].

2. Experiment

High purity (6 N) aluminium single crystalline samples were annealed in high vacuum for
several hours at 900 K to obtain a perfect defect-free state. Two pairs of samples were
prepared: one with a thickness of 1 mm, the other—with an initial thickness of 3 mm—was
deformed to 65% reduction in thickness to saturate it with a high density of dislocations.
Helium atoms of energy varying from 3 MeV to 45 MeV in regular discrete steps were
implanted in both the pairs of samples to a total dose of 1018 cm−2. This gave a net input
helium concentration of about 300 p.p.m. A 22Na source was sandwiched between the pairs of
samples for positron annihilation experiments. Positron lifetime measurements were carried
out using a slow–fast coincidence set-up with 240 ps resolution (fwhm) for 60Co prompt
gamma rays. The data were analysed using RESOLUTION and POSITRONFIT [8]. Doppler
broadening measurements were also carried out using a 40 cm3 HPGe detector having a
resolution (fwhm) 1.14 keV at 514 keV (85Sr). The conventional S parameter was used to
interpret the data [9].

The samples were isochronally annealed at intervals of 25 K from 300 to 900 K for 1 hour
at each temperature and in high vacuum (10−3 Pa) followed by slow cooling in vacuum to
room temperature. Measurements at room temperature were carried out after each annealing.

3. Results and discussion

The analysis of the S versus T variation shown in figure 1 indicated evidence to suggest strong
interaction between the helium atoms and the existing matrix of dislocations in the initial stages
of isochronal annealing. As is expected, the helium atoms are mobile in aluminium at moderate
temperatures and are likely to be trapped in vacancies and other types of heterogeneity such
as dislocations and grain boundaries. The behaviour of the two curves at higher temperatures
is similar, showing the stages of helium–vacancy interaction, formation and growth of larger
helium bubbles and further growth aided by thermal vacancy condensation.

In the discussion on the results of the positron lifetime experiments, only the longer lifetime
component τ2 and its intensity I2 are considered, for the shorter lifetime τ1 invariably reflected
consistency with the two-state trapping model normally prevalent in such situations [10]. This
model assumes that the positron annihilates either in the bulk of the metal with a rate λb or
after getting trapped in the defect, in which case the annihilation rate is reduced to λd . The
kinetic equations governing the decay of the number of positrons in the respective states then
will have the form

dnb

dt
= −λbnb − κnb (1a)

and

dnd

dt
= −λdnd + κnb (1b)

where κ is the rate of trapping of positrons from the bulk to the defects. Assuming that initially
all the positrons are released into the bulk, i.e nb(t = 0) = 1 and nd(t = 0) = 0, the above
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Figure 1. The S parameter versus annealing temperature variation for the helium-implanted Al
samples; open circles denote the data for the non-deformed sample and the closed circles those
of the deformed one. The inset shows the corresponding variation for a plastically deformed but
unimplanted Al sample.

two equations can be solved to get

n(t) = nb(t) + nd(t)

= λb − λd

λb − λd + κ
exp[−(λb + κ)t] +

κ

λb − λd + κ
exp(−λdt). (2)

After deconvoluting the instrumental resolution function and correcting for the effects of source
and background, each of the experimental positron lifetime spectra could be decomposed into
two components such that

n(t) = I1 exp(−t/τ1) + I2 exp(−t/τ2). (3)

A comparison of the equations (2) and (3) gives a direct relation for the estimation of the
positron lifetime (τb = λ−1

b ) in the bulk of the metal in terms of the measured lifetimes τ1, τ2

and their intensities I1 and I2. The lifetime thus estimated

τ cal
b =

(
1

τ1
− κ

)−1

(4a)

with

κ = I2

(
1

τ1
− 1

τ2

)
(4b)

should be independent of the individual variations of τ1, τ2, I1 and I2. As illustrated in figure 2,
the interpretation of the present results in terms of the two-state trapping model in both the



180 A Singh et al

Figure 2. The variation of the positron lifetime τ2 and intensity I2 with the annealing temperature
in the helium-implanted non-deformed (open circles) and deformed (closed circles) Al samples.
The inset shows the corresponding variation of I2 (τ2 is fixed at 225 ps, the positron lifetime in
dislocations) in the case of an Al sample, plastically deformed but not implanted by helium ions.

samples is thus justified and the actual defect kinetics could be discussed on the basis of the
changes in τ2 and and its intensity I2.

The longer lifetime τ2 in fact represents the annihilation of positrons in the dominant
trapping centres at the respective annealing stages, namely the helium–vacancy complexes,
helium decorated dislocations and loops and bubbles. When compared with the trend of
variation in the case of the reference non-deformed sample, the variation of both τ2 and I2 in
the temperature region 300–425 K of the deformed sample is indicative of helium decoration of
dislocations and loops (figure 2). The subsequent region of bubble growth, seen to commence
at 475 K in the non-deformed sample, results from the migration and coalescence of small
bubbles into larger ones and the bubbles then are held stable over a wide range of temperatures
from 600 to 750 K. The stabilization of the bubbles probably results from the segregation
of transmutation-induced Na impurities on the bubble surfaces, as discussed by Jensen and
co-workers [3]. Beyond this region, further bubble growth is observed and could be attributed
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to the condensation of thermal vacancies into the bubbles. In the deformed sample, these
stages are seen characteristically delayed. For example, the bubble growth resulting from
migration and coalescence starts after 600 K only. An independent experiment on a pure Al
single crystalline sample deformed identically (but not implanted with helium atoms) showed
the annealing of dislocations being complete at around 600 K (insets in figures 1 and 2). This
indicates that the formation and migration of the helium bubbles are strongly impeded by the
dislocations and take place only after the latter are annealed out of the sample. It may also
be noted that the helium atoms decorating the dislocations are unable to hold the dislocations
stable against thermal annealing. In other words, the binding of the helium atoms with the
dislocations appears rather weak. Once the dislocations are fully annealed out, the released
helium atoms get strongly attracted to the vacancy-type defects and their interaction result into
the formation of large bubbles. As the annealing temperature has already crossed the energy
necessary for the migration of small bubbles, a rapid bubble growth stage is observed from
600 K onwards.

A few comparative observations are strikingly evident. The positron lifetime in the
bubbles in the as-implanted deformed samples is 50 ps less than that in the non-deformed
sample. Indirectly this implies a smaller bubble size in the deformed samples. While a detailed
analysis of the positron lifetime data to get quantitative inferences on the bubble properties
will be discussed shortly, the smaller bubble size in the deformed samples is indicative enough
to highlight the role of dislocations in restricting the free growth of bubbles. The possibility
of the production of grain boundaries due to the deformation strain is also not ruled out, in
which case, the grain boundaries will also have a reducing influence on void growth [11].
The intensity I2 in the deformed sample, on the other hand, is larger compared to that in
the reference non-deformed sample, implying that the dislocations do provide a favourable
environment for bubble nucleation. Bubble coarsening is further indicated in both the samples
by gradual reduction of I2 at the higher annealing temperatures.

Quantitative understanding of the properties of helium bubbles nucleated in implanted
materials is essential to the understanding of the bubble growth kinetics under temperatures
identical to that in reactor environments. Aluminium being a metal of relatively low melting
point is ideal for systematically following the sequential changes in the densities and pressures
of the bubbles formed under thermal conditions. The positron surface state model, proposed by
Jensen and Nieminen [6], has been in universal use for more than a decade to estimate the helium
atom density nHe from the measured positron lifetime τ2 (attributed to helium bubbles). This
relation, when the positron lifetime is expressed in picoseconds and nHe in Å−3, has the form

τ2 = 500 − 2350nHe (5)

where 500 ps stands for the saturation lifetime of positrons trapped at the clean metallic surface
of a fully grown void in Al. As the helium atom density thus obtained is comparable to metallic
densities (∼0.06 Å−3 in Al), the effects of deviation from the ideal gas behaviour need to be
considered for the estimation of the corresponding bubble pressure. Trinkaus [7] has sug-
gested an approach in which the helium atom density obtained from equation (5) together with
a compressibility factor Z = Z(T , Tm, nHe) would denote the corresponding thermodynamic
variable in an otherwise ideal-like gas equation

P = kBT ZnHe (6)

where kB is the Boltzmann constant. The evaluation of Z needs to examine the changes of
volume associated with a given helium atom when the bubble is expected to melt at the tem-
perature Tm. In other words, one can equate the fluid volume per atom upon freezing vl given
by Trinkaus [7] as

vl = 56T −1/4
m exp(−0.145T +1/4

m ) in Å3 (7)



182 A Singh et al

Figure 3. The polynomial relation (solid line)
between the melting temperature of helium and the
density of helium atoms.

Figure 4. The variation of the compressibility factor Z with
temperature for four different helium atom densities.

with the sum of the solid volume per atom v = 1/nHe and the change in that volume due to
melting as can be obtained from the Clausius–Clapeyron equation. Mills et al [12] had empir-
ically related the change in molar volume of helium upon melting with the melting pressure
Pm by the relation

�Vm = 0.6640(Pm + 1.604)−0.3569 (8)

so that the fluid volume vl can be written as

vl = v + �Vm/NA (9)

where NA is the Avogadro number. Solving the equations (7) and (9) with the help of the
Simon-type equation [12]

Pm(GPa) = 0.001 691T 1.555
m − 0.000 8112 (10)

the melting temperature Tm was obtained for the different values of nHe and plotted in figure 3.
It is significant to observe a systematic variation of the melting temperature with the density
of helium atoms (in Å−3) in the bubble and the two variables can be fitted with a polynomial
(solid line in the figure) as given below.

Tm(K) = 25.083 − 1.374 × 103nHe + 2.369 × 104n2
He. (11)

The compressibility factor Z in the final form is given by the expression

Z = (1 − ρ)(1 + ρ − 2ρ2) + (1 − ρ)2B(T )nHe + (3 − 2ρ)ρ2zl − 50(1 − ρ)ρ2 (12)

where the virial coefficient B(T ) = 170T −1/3 − 1750T −1 (in Å3) and the compressibility on
freezing zl = 0.1225vlT 0.555

m . The reduced particle density ρ is defined as ρ = vlnHe and
equation (12) has been successfully used as an appropriate equation of state for high density
helium bubbles in a number of recent studies [13–15].

Certain basic features of the dependence of the compressibility factorZ on the temperature
of bubble formation and helium atom density in the bubbles are revealed in figures 4 and 5. It
can be noted from figure 4 that the dependence of Z on temperature is rather indirect and the
actual need to modify the ideal gas equation in fact originates from the strong helium–helium
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Figure 5. The Z versus nHe variation at three different
temperatures. The lines in fact overlapped but are
vertically shifted for clarity.

Figure 6. The variation of dZ/dnHe with nHe .

interaction as may be expected from the high helium atom density discussed earlier. The
dependence of Z on nHe over the complete range of helium atom densities dealt with in the
present experiment is illustrated by the three isotherms in figure 5. Initially at lower values of
nHe, the variation of Z is very sharp and can be understood as due to the ‘softness’ of the atoms,
which permits them to be at closer proximity than in an ideal gas where the atoms are conceived
as rigid spheres. The compressibility however may attain saturation at very high densities, an
indication of which is evident from the (dZ/dnHe)T versus nHe curve shown in figure 6.

In non-equilibrium experiments where the positron lifetimes are normally measured at
room temperature after cooling the samples following the corresponding heat-treatments, the
use of the temperature T and the helium atom density nHe in equation (6) needs to be consistent
with the actual experimental situation. This means when the helium bubble pressure P is
calculated from the measured nHe and the room temperature in equation (6), the interpretation
of the results can be unrealistic for want of consideration of the explicit dependence of the
bubble pressure on the temperature and of the thermal expansion of the host metal on the helium
atom density during the annealing. In order to verify this conjecture, the bubble pressure
corresponding to each annealing temperature was estimated in two ways, one (PRT ) using
room temperature and the helium atom density obtained from equation (5) and the other (PT )
using the annealing temperature and the helium atom density appropriately scaled to consider
the effects of lattice expansion of aluminium due to the change from the room temperature
to the annealing temperature. For the scaling, we first estimated the helium bubble radius at
room temperature after each annealing from the quadratic equation [13–15]

H

A
r2
B +

H

B
rB − 1 = 0 (13)

where H = (4πnHeκB)/(3SfNHe). The total input helium concentration NHe is calculated
from the initial implanted helium dose and energies and the positron trapping rate κB is obtained
from the measured positron lifetimes and intensities using equation (4b). The scaling factor
Sf is used to account for the dependence of the trapping efficiency on nHe as discussed
by Jensen and Nieminen [6]. A = 9.07 × 1015 Å−1 s−1 and B = 3.30 × 1014 Å−2 s−1 are
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Figure 7. Variation of helium bubble pressures PT (◦)
and PRT (�) with annealing temperature above 600 K in
the non-deformed sample.

Figure 8. Variation of helium bubble pressures PT (•)
and PRT (�) with annealing temperature above 600 K in
the deformed sample.

empirical constants. Assuming realistically that all the input helium is contained in the bubbles
and further that the bubbles are spherical in shape with the mean radius rB , an equation of
consistency can be framed as

NHe = 4
3πr3

BCBnHe. (14)

We assume that the helium bubble concentration CB during the cooling of the sample does not
change owing to decreasing thermal energy otherwise available for the bubbles to migrate and
the only possible effect is the lattice contraction of the host metal. In such a case, the actual
bubble radius at the culmination of the annealing at a particular temperature T can be estimated
as rTB = rB(1 + αT ) with the linear thermal expansion coefficient of Al considered to be pro-
portional to T above the Debye temperature (θD = 394 K). Since helium is unlikely to escape
from the samples, we can equate to the same NHe in equation (14) the re-estimated helium
concentration in terms of rTB and obtain the helium atom density nT

He at the particular annealing
temperature. The pressure (PT ) thus estimated using the corresponding T and nT

He is shown
against the annealing temperature of the reference non-deformed sample in figure 7. For com-
parison, the pressure (PRT ) calculated using room temperature and nHe obtained from equation
(5) is also shown. The corresponding results for the deformed sample are shown in figure 8.

There are certain interesting implications of these results, as will be discussed in the
following. In both the cases, PT > PRT despite the helium atom density being smaller during
the annealing than after cooling to room temperature. (For clarity, we have illustrated three
representative cooling characteristic curves for the bubble pressure in figure 9.) The higher
bubble pressure during the annealing would imply the likelihood of occurrence of favourable
pressure relaxation processes, such as dislocation loop punching. While the variation of
PRT with annealing temperature in the temperature range 600 to 800 K of the non-deformed
sample does not indicate any pressure build-up that could lead to the subsequent relaxation
above 800 K, it is amply indicated by the rise of PT in this range. Even though the role of
thermal vacancy condensation is reflected in the sharp fall in pressure, PT appears to be a
more sensitive parameter compared to the normally adopted PRT . Identical arguments equally
hold good in the case of the deformed sample as well. There are however striking differences
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Figure 9. The drop in helium bubble pressure while cooling the sample to room temperature after
annealing at three different temperatures.

Figure 10. The variation of (a) the bubble radius rB and (b) bubble concentrationCB with annealing
temperature in the two samples (open circles denote the non-deformed sample and the closed circles
denote the deformed sample).

which are worth special mention, like the observation of relatively higher bubble pressure in
the deformed sample. The dislocations (and perhaps grain boundaries too) which had been
initially present in the deformed sample had severely restricted the growth of bubbles. Another
justification for this statement may be seen in figure 10 where the mean bubble radius in the
deformed sample is smaller than that in the non-deformed sample, in contrast to the bubble
concentration. Both are indicative of the accommodation of a larger number of helium atoms
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Figure 11. The Arrhenius plots depicting ln rB against the inverse (×1000) of the annealing
temperature.

in the bubbles in the defomed sample. Although at higher annealing temperatures the bubble
radius in the deformed sample appears to be larger than in the non-deformed one, the pressure
in the former remains larger than that in the latter. This is a strong indication of the role of
dislocations in favouring the formation of higher density bubbles of smaller dimensions even
while they are annealed out without being stabilized by the helium atoms.

A further verification of the above argument may be presented with the help of figure 11,
where the Arrhenius plots depicting the variation of the bubble radius versus the scaled inverse
of temperature (1000/T ) have been shown. Since the data points are highly scattered, we have
adopted the following method to draw the solid lines in the figure. For each sample, any two
points towards either extremes (corresponding to the temperature range 600–900 K only) were
selected at random and the slope is determined. Taking the average of the slopes obtained
from several such combinations, the line was drawn and an activation energy of 0.04 eV has
been obtained in the non-deformed sample. In the deformed one, the corresponding value thus
obtained was approximately 0.08 eV. Notwithstanding the crudeness of the model being used
to estimate the bubble radius, the two activation energies differ by a factor of 2, suggesting
that bubbles with higher densities certainly are likely to suffer from less mobility and their
migration accordingly may be partly impeded.

In all the cases discussed above, the bubble pressure is much higher than the equilibrium
bubble pressure given by Peq = 2γ /rB where γ is the surface tension of Al (∼1 N m−1).
The bubbles are thus extremely overpressurized and will be driven to partial relaxation of the
pressure under suitable conditions such as the generation of thermal vacancies. The actual
bubble pressures at certain temperatures are as high as 5–6 GPa. The Simon–Glatzel relation
connecting the freezing temperature Tm of helium with the corresponding bubble pressure Pm

is given by

Pm(GPa) = A[(Tm/T0)
c − 1] (15)

with A = 0.0051 GPa and c = 1.5602 constants and T0 = 2.045 K for He. For Pm = 6 GPa,
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the equation predicts a freezing temperature for helium as high as ∼190 K and is a temperature
attainable in standard cryogenerators. Experiments to investigate such a transition have been
carried out recently and the results will be soon published elsewhere [16].

4. Conclusions

It is demonstrated in this study that a systematic and quantitative investigation of the interaction
of helium with dislocations is possible by implanting helium atoms directly into a dense
matrix of dislocations. The effects of helium–vacancy interaction thus can be fully delineated.
We see that dislocations can act as very strong trapping centres for helium deposition and
the clustering process (in other words, the formation of bubbles) at the dislocation sites is
a more intensified one, resulting in denser bubbles compared to those in a non-deformed
helium-implanted sample. Quantitative analysis using the positron surface state model and the
high density equation of state points towards the formation of highly overpressurized helium
bubbles.

We further observe that the melting temperature of helium under high pressure can be
polynomially fitted with the helium atom density and the relation makes it possible to directly
estimate the former if the latter is experimentally measured either through positron annihilation
or other experimental methods such as transmission electron microscopy.

It may be noted that the pressure corresponding to the actual annealing temperature
estimated by scaling the helium atom density for the effects of lattice contraction is higher than
the bubble pressure at the room temperature, although the helium atom density is reduced by
the said scaling. This implies that temperature has the dominant role over the helium bubble
dynamics than the density of atoms.
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